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Abstract 

Interactions between surface and ground water are a key component of the hydrologic budget on the 

watershed scale. Models that honor these interactions are commonly based on the conductance concept 

that presumes a distinct interface at the land surface, separating the surface from the subsurface 

domain. These types of models link the subsurface and surface domains via an exchange flux that 

depends upon the magnitude and direction of the hydraulic gradient across the interface and a 

proportionality constant (a measure of the hydraulic connectivity). Because experimental evidence of 

such a distinct interface is often lacking in field systems, there is a need for a more general coupled 

modeling approach. 

 

A more general coupled model is presented that incorporates a new two-dimensional overland flow 

simulator into the parallel three-dimensional variable saturated subsurface flow code ParFlow. In 

ParFlow, the overland flow simulator takes the form of an upper boundary condition and is, thus, fully 

integrated without relying on the conductance concept. Another important advantage of this approach is 

the efficient parallelism incorporated into ParFlow, which is efficiently exploited by the overland flow 

simulator. 

 
Several verification and simulation examples are presented that focus on the two main processes of 

runoff production : excess infiltration and saturation. The model is shown to reproduce an analytical 

solution for overland flow and compares favorably to other commonly used hydrologic models. The 

influence of heterogeneity of the shallow subsurface on overland flow is also examined. The results 

show the uncertainty in overland flow predictions due to subsurface heterogeneity and demonstrate the 

usefulness of our approach. Both the overland flow component and the coupled model are evaluated in 

a parallel scaling study and show to be efficient. 



1 Introduction 

 

The subsurface and surface are complex environmental systems that often behave in a coupled manner. 

Surface water in rivers, streams, lakes and wetlands is in constant communication with the vadose 

zone, shallow and deep groundwater systems. Thus, surface-groundwater interactions are an intrinsic 

component of the hydrologic budget on the watershed scale and hydrologic modeling tools must 

account for this interaction to provide reliable predictions. Surface-groundwater interacions have been 

a widely recognized research area by several scientific communities interested in different spatial 

scales varying from bedform scale in hyporheic exchange modeling to continental scale hydrologic 

response modeling. 

 

The occurrence of surface water and its spatial and temporal distribution depends on climatic factors 

(e.g., amount and distribution of rainfall and temperature), vegetation, topography (micro and macro), 

and on the exchange of water between the surface and the sub-surface. The rate and direction of 

exchange (groundwater discharge at the land surface or surface water infiltration into the subsurface) 

depend on the rainfall rate, direction of the hydraulic gradient and hydraulic characteristics of the land 

surface. 

 

The two major processes of runoff production are commonly referred to as Hortonian and Dunne 

runoff. Hortonian runoff, often referred to as excess infiltration, occurs when the rainfall rate exceeds 

the saturated hydraulic conductivity of the land surface. Under excess infiltration conditions, ponding 

(accumulation of water at the surface) can occur before the subsurface becomes entirely saturated 

(Kutilek and Nielsen, 1994). Dunne runoff, often referred to as excess saturation, occurs when the 



rainfall rate is smaller or equal to the saturated hydraulic conductivity of the land surface. Under excess 

saturation conditions, ponding can occur only when the entire soil column becomes completely 

saturated and water exfiltrates at the surface (Kutilek and Nielsen, 1994). Although these two processes 

are often considered independent, in the presence of a non-uniform distribution of soil properties, 

infiltration and saturation excess are interrelated and may occur simultaneously at various spatial and 

temporal scales. 

 

Traditionally, the coupling of the surface and subsurface domains has been done via a so-called 

exchange flux that appears in both the groundwater and surface water flow equations as general 

sink/source terms. In this approach, the exchange rate is expressed in terms of the conductance concept 

which assumes an interface connecting the two domains (e.g., Anderson and Woessner 1992; 

VanderKwaak and Loague, 2001). This interface is commonly characterized by a proportionality 

constant representing the connectivity between the surface and sub-surface and generally involves the 

ratio of the interface hydraulic conductivity and effective thickness (e.g., Hantush, 1965). Recent 

studies have included additional processes into the conductance concept to account for the influence of 

microtopography on surface saturation (VanderKwaak and Loague, 2001; Panday and Huyakorn, 

2004). In many cases, the application of the conductance concept to real systems is problematic, 

because the existence of a distinct interface has yet to be demonstrated in the field (Kollet and Zlotnik, 

2003; Cardenas and Zlotnik, 2003 ). 

 

Numerical algorithms for solving the problem of variable saturated groundwater flow are widely 

available and have been published extensively (e.g., Huyakorn et al., 1986; Kirkland et al., 1992; 

Forsyth et al., 1995; Therrien and Sudicky, 1996; Miller et al., 1998; Jones and Woodward, 2001). 



Overland flow simulators have been also studied extensively, though major problems with 

inappropriate stability criteria remain to be a problem in many cases (Taylor et al., 1974; Gottardi and 

Ventulli, 1993; Fiedler and Ramirez, 2000; Jaber and Mohtar, 2003). The coupling of surface and sub-

surface flow also received considerable attention recently, with most models coupled in a linked 

fashion, iterating over the exchange flux until some convergence criterion is reached. This approach 

may cause large mass balance errors (e.g., LaBolle et al., 2003) and numerical instabilities, because of 

the large differences in the time scales of the two processes (surface runoff occurring on a much shorter 

time scale than the subsurface). Previous studies are summarized briefly below. 

 

Freeze and Harlan (1969) provided the first comprehensive conceptual and theoretical framework of an 

integrated hydrologic response model on the watershed scale. Later, Govindaraju and Kavvas (1991) 

developed a coupled model that accounts for 1D channel and overland flow and 3D variable saturated 

groundwater flow. They studied the response of variable source areas (saturated areas adjacent to the 

stream) to hydrologic and topographic variations. Woolhiser at al. (1996) studied the effect of 

subsurface heterogeneity in the hydraulic conductivity using an overland flow model coupled to the 

Smith-Parlange infiltration model. They demonstrated the effect of heterogeneity on the hydrograph 

and presented a technique that accounted for the influence of microtopography. Wallach et al. (1997) 

studied the error in the exchange rate between the surface and the subsurface when the exchange rate is 

calculated assuming zero ponding depth. Fiedler and Ramirez (2000) solved the 2D hydrodynamic flow 

equations using MacCormack finite differences. In their model, interactive infiltration is simulated 

using the Green-Ampt formulation. Gunduz and Aral (2004) solve the problem of coupled groundwater 

and 1D channel flow by forming a single matrix instead of solving two separate matrices for the two 

domains. Braunschweig et al. (2004) presented an integrated hydrologic modeling system that 



incorporates routing of water inside channels and on the land surface coupled to infiltration processes. 

Putti and Paniconi (2004) discussed numerical issues, such as the influence of the time step size on the 

global convergence behavior, in coupling a 3D variable saturated flow model with a 1D diffusion 

formulation of the overland flow equations. VanderKwaak and Loague (2001) and Panday and 

Huyakorn (2004) presented fully coupled approaches including land surface processes, such as 

evaporation, and demonstrated their usefulness. A common theme among previous work summarized 

here is that these models rely on some form of the conductance concept. The current work presented in 

this paper differs from these studies in that it provides a framework for a more general approach. 

 

This study presents a general framework for coupling the surface and groundwater flow equations, 

which does not rely on the conductance concept. The surface water equations are used to close the 

initial value problem of variable saturated groundwater flow, which results in an overland flow 

boundary condition. This overland flow boundary condition, which has not been published before in 

the presented form to our knowledge, takes into account the free surface of water ponded at the land 

surface. To demonstrate the usefulness of this approach, we developed a two-dimensional distributed 

overland flow simulator, which was implemented into the three-dimensional, variable saturated 

groundwater flow code ParFlow . We present verification and simulation examples that focus on the 

surface water component independently and the aforementioned processes of excess infiltration and 

saturation. We introduce subsurface heterogeneity in the hydraulic conductivity tensor resulting in 

surface runoff and hydrograph uncertainty. ParFlow was designed for parallel computer systems and 

has been used extensively in large-scale and high resolution modeling (Ashby and Falgout, 1996; Jones 

and Woodward, 2001). The overland flow simulator exploits ParFlow’s parallel infrastructure 

effectively and is also fully parallel, which is demonstrated in a parallel efficiency study.  



 

2 Theory 

As mentioned in the Section 1, the theory of coupled surface-water groundwater systems has been the 

subject of many previous studies. Hence, the governing equations of overland flow and variable 

saturated groundwater flow have been discussed in great detail in the literature. We therefore, provide 

only a brief summary of these equations that form the basis for the set of coupled equations presented 

later in Section 2.5. 

 

2.1 Shallow Overland Flow  

In two spatial dimensions, the continuity equation can be written as  
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where vv  is the depth averaged velocity vector [LT-1]; ψs is the surface ponding depth [L], qr(x) is the 

rainfall rate [LT-1] and qe(x) is the exchange rate with the subsurface [L], which will be discussed in 

detail below. Note, that in Equation (1) the flow depth is vertically averaged. Thus, vertical change of 

momentum in the column of ponded water is neglected in this formulation. This has been shown to be a 

good approximation for shallow systems. 

 

If diffusion terms are neglected the momentum equation can be written as 

Sf,i = So,i (2) 

which is commonly referred to as the kinematic wave approximation. In Eq 2 So,i is the bed slope 

(gravity forcing term) [-], which is equal to the friction slope Sf,i [L]; i stands for the x- and y-direction. 

Although we consider the kinematic wave in the current work, this formulation can be expanded to 

incorporate the diffusive and dynamic wave equations (Fiedler and Ramirez, 2000) . 



 

Manning’s equation  is used to establish a flow depth-discharge relationship 
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where n [TL-2/3] is the Manning’s coefficient. This empirical relationship has been widely applied to 

describe surface water systems. Anisotropy in the Manning’s coefficient is not considered here, though 

it could easily be incorporated. 

 

At the outlet, two types of boundary conditions were implemented into the overland flow simulator: the 

gradient and critical depth outlet conditions (Equations 4 and 5, respectively) 
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where g is the acceleration due to gravity [L/T-2]. The gradient outlet condition is equivalent to the zero 

depth gradient condition of Panday and Huyakorn (2004) for the case of the diffusive wave 

approximation. The critical depth boundary condition results in a constant flow depth at the outlet. 

 

2.2 Variable Saturated Groundwater Flow 

The equation for variable saturated groundwater flow is the well-known Richards’ equation 
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where ψp is the subsurface pressure head [L], z is depth below the surface [L], k(x) is the saturated 



hydraulic conductivity [LT-1], kr is the relative permeability [-] (a function of pressure head, ψp), Ss is 

the specific storage coefficient [L-1], φ is the porosity [-], Sw is the degree of saturation [-], qs is the 

general source/sink term [T-1], qe is the exchange rate with the surface [LT-1] and  is the thickness of 

an interface separating the surface and subsurface domains [L]. The datum is located at the ground 

surface (z = 0) with the negative z-axis pointing downward. In the current formulation, the van 

Genuchten (van Genuchten, 1980) relationships are used to describe the relative saturation and 

permeability functions. 
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where α [L-1]and β [-] are soil parameters, ssat [-] is the relative saturated water content and sres [-] is 

the relative residual saturation. 

The boundary conditions are of the Neumann type  

( ) ( ) bcr qzkxk =−∇− ψ  (9) 

on Γ, but can be changed to the Dirichlet type if necessary. 

 

2.3 Exchange Flux 

In previous efforts, an exchange flux qe was used to couple the surface and the subsurface domains. It 

generally follows the form  

( ) ( )( )pse xxq ψψλ −=  (10) 



Thus, the exchange rate depends upon the gradient across some interface and the proportionality 

constant λ(x) [T-1], which is a measure of the hydraulic connectivity between the two domains (Figure 

1). This concept has been used extensively in studies concerned with the interactions of surface-

subsurface flow and is also known as the conductance concept with λ being the conductance coefficient 

(Hantush, 1965; Anderson and Woessner, 1992 ). 

 

Often the system of equations outlined above is solved iteratively. For example, one might iterate over 

qe until some convergence criteria is fulfilled. However, since overland flow time scales may be much 

smaller than groundwater flow time scales, numerical instabilities often arise, necessitating adaptive 

time stepping and/or a fully integrated approach to solve the system of equations simultaneously (e.g., 

Panday and Huyakorn, 2004). 

 

A perhaps even greater limitation of this approach lies in the assumption that there exists some distinct 

interface between the surface and subsurface and in the ensuing definition of the proportionality 

constant λ. For example, λ generally depends upon the ratio of some interface permeability k ′  and the 

interface thickness . It is difficult to establish evidence of such a distinct interface from direct field 

observations (Cardenas and Zlotnik, 2003; Kollet and Zlotnik, 2003). Additionally, often a simplifying 

assumption of spatial uniformity in the hydraulic interface properties is applied, because of a lack of 

field data. In many cases, no in-situ measurements are available and λ is used solely as a fitting 

parameter. The question arises, whether the conductance concept is actually a useful conceptual model 

of interactions between the surface and the subsurface, and implies the necessity of a more general 

formulation.  

m′

 



2.5 A general coupled surface-subsurface formulation 

The previous section summarizes the current approach and points to the need for a more general 

formulation of the coupled surface-subsurface system. A formulation that directly couples the system 

of equations via the boundary condition at the ground surface is presented below. This formulation 

eliminates some of the problems associated with the definition of an interface conductance and 

numerical inefficiencies associated with the solution of the coupled system. 

 

As shown in Figure 1, the overland flow equations may be implemented into the Richards equation at 

the top boundary cell under saturated conditions. Using conditions of continuity of pressure (ψs = ψp = 

ψ) and flux (qbc = qe) at the ground surface (Figure 1), equation (1) can be solved for for qe  
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and then substituted for qbc in the boundary condition in Equation (9): 
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where BA,  indicates the greater of A and B. This results in the surface water equations represented as 

a boundary condition to the Richards Equation. This new boundary condition is head-dependant and 

accounts for the movement of the free surface of ponded water at the ground surface. In Equation (12), 

if one assumes no lateral flow ( 0=∇ ψvv ) and no recharge/precipitation (qr(x) = 0) the infiltration or 

exfiltration rate equals the vertical velocity of the free surface of ponded water. A similar formulation 

has been used by Neuman (1972) and Moench (1997) to account for the movement of the free water 

table of an unconfined aquifer. 

 



Equation (4) now reduces to 
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with qe being accounted for in the new overland flow boundary condition (Equation 12), which 

intrinsically couples the surface and subsurface domains . 

 

Figure 1. Schematic of the conductance concept (left) with an interface of thickness m`, which is 

represented by the conductance coefficient λ in theoretical models. The more general overland flow 

boundary is shown on the right. 

 

2.5 Discretization and Numerical Implementation  

The discretization and numerical implementation of the variable saturated groundwater flow equation 

has been discussed in detail (e.g. Huaykorn and Pinder, 1980). The current formulation builds upon the 

works of Jones and Woodard (2001) and only the details pertinent to the new overland flow boundary 

condition are presented here. Jones and Woodward employed an implicit backward Euler and cell-

centered finite differences scheme for the discretizations in time and space, respectively. At the cell 



interfaces, the harmonic averages of the saturated hydraulic conductivities and a one-point upstream 

weighting of the relative permeabilities are used. 

 

For the overland flow component, a standard upwind finite control volume scheme was used for the 

spatial discretization and an implicit backward Euler scheme in time. The advantage of the spatial 

discretization methods applied in this study is that they are locally mass conservative. Discretization 

errors for Richards equation have been analyzed extensively by Woodward and Dawson (2000). 

 

The solver implemented in the current study is described by Jones and Woodard (2001) and is a 

Newton-Krylov solution method (e.g., Saad, 2003). Newton-Krylov methods are based on a Newton 

linearization of the nonlinear system. The Jacobian is then solved with an iterative Krylov method. An 

advantage of this method is that the Krylov solver only requires matrix-vector products not the solution 

of the matrix itself. Additionally, Jones and Woodward (2001) preconditioned the linear system with an 

approximated Jacobian to improve convergence. In this study, the diagonal of the preconditioner matrix 

was modified to account for the overland flow boundary condition. As shown in below, this proved to 

be an efficient approximation of the Jacobian. 



3 Numerical Simulations, Results and Discussion 

No analytical solution exists for the coupled surface-subsurface system of equations presented in 

Section 2. This makes model verification of the coupled system problematic. The approach taken here 

is to verify the overland flow simulator independently and then present a series of coupled modeling 

examples. The overland flow simulator was verified by comparing results to an analytical solution and 

other overland flow models. The modeling examples presented in this section focus on the two major 

processes of runoff production, that are, excess saturation and excess infiltration. The influence of 

spatially discrete subsurface heterogeneity (in form of a low conductivity slab) on the hydrograph is 

studied. Additionally, we present the results from a simulation where the saturated hydraulic 

conductivity is represented as a space-random function using a small number of realizations. This study 

provides an example of the uncertainty in the simulated hydrograph due to uncertainty in subsurface 

heterogeneity. We conclude this section with a parallel scalability study of both the overland flow 

simulator and the fully coupled surface water groundwater flow model. 

 

3.1 Model Verification 

The numerical solution of the overland flow equations was verified by comparing to results published 

in Panday and Huyakorn (2004) and to an analytical solution. The Panday and Huyakorn results are for 

a two dimensional tilted V-catchment (Figure 2) for both, the gradient and critical depth outlet 

conditions. Additionally, Panday and Huyakorn (2004) provided results from some commonly used 

hydrologic simulation models, such as HSPF (Bicknell et al., 1993) and HEC-1 (USACE, 1998), the 

results of which are also shown here (Figure 3). The analytical solution used in the verification 

procedure describes a one dimensional overland flow system. Note that analytical solutions only exist 

for the one dimensional case. 



The 2D V-Catchment Case 

The problem setup for the tilted V-catchment after Panday and Huyakorn (2004) is shown in Figure 2. 

We simulated a 1.620km x 1km catchement slanted in the x- and y-direction with a centrally-located 

outlet at 800 m ≤ x ≥ 820 m, y=0. The slopes of the catchment are inclined inward routing flow into the 

center channel. The Manning’s roughness coefficients are 1.74 x 10-7 and 1.74 x 10-6 (day/m1/3) for the 

slopes and the channel, respectively. An equidistant discretization of 20 m (∆x = ∆y) was used. As 

described in Panday and Huyakorn (2004), for 90 minutes the rainfall rate was 3 x 10-6 m/s with a 

subsequent 90 minutes recession period (total simulation time of 180 minutes). A constant time step of 

100 seconds was used. To compare with the other model results in Figure 3, simulations with both 

outlet types, gradient and critical depth, were performed.  
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Figure 2. Plan view (not to scale) of the Problem setup of the tilted V-catchment after Panday and 

Huyakorn (2004).  

 

Figure 3 shows that the ParFlow simulations for the critical depth and gradient outflow conditions are 

similar, because the kinematic wave approximation was used. The ParFlow simulations for the gradient 

outflow condition agree well with the results from MODHMS (Panday and Huyakorn) and HEC-1. The 

differences in model simulations, are mainly due to application of the kinematic wave approximation. 



However, the differences are relatively small, because the topographic slopes are fairly large, which 

results in overland flow that is dominated by the gravity  force (or kinematic) term. 

 

The differences become smaller in the case of the critical depth outflow condition; due mainly to higher 

outflow during earlier simulation times. This results in a general decrease in the flow depth and less 

influence of the pressure force (or diffusive term) in the diffusive wave approximation used in e.g., 

MODHMS. The use of a constant time step in ParFlow that is more than an order of magnitude larger 

than the minimum time step of 5 seconds used in the MODHMS also contributes to differences at early 

simulation times. Overall the ParFlow model produces results that agree very well with other published 

results and lend confidence in the overland flow simulator in ParFlow. The fact that the solution 

method is based on the simpler kinematic wave approximation and does not explicitly distinguish 

between the channel and the land surface does not appear to affect the results significantly.  
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Figure 3. Comparison of simulated hydrographs for the V-catchment problem for a number of 

hydrologic simulation models and ParFlow. 



 

Comparison with 1D Analytical Solution 

There exist few analytical solutions for overland flow problems. The one compared to here (e.g., 

Gotardi and Venetulli, 1993) is for a one dimensional channel of constant slope and roughness. The 

parameters used in this comparison were obtained from Gotardi and Venetulli (1993) and Jaber and 

Mohtar (2003) and are as follows: Sox = 0.0005, n = 2.3 x 10-7 (day/m1/3), and qr = 0.33 (mm/min). 

Rainfall, qr, was applied for 200 minutes followed by 100 minutes of recession (qr = 0), which resulted 

in 300 minutes total simulation time. The time step size was constant at 180 sec, as was the spatial 

discretization, ∆x = 80 m. There were five cells in the x-direction (nx = 5) resulting in a total flow 

length of 400 m. The flow outlet was located at x = 0 and was simulated as a gradient outlet. For the 

remainder of the section this particular simulation is referred to as the base case. 

 

Figure 4 shows the comparison between the analytical and numerical solutions. Note that the 

differences at the time of concentration (tc, when the outflow equals the rainfall rate) and at the end of 

the recession are due to the coarse spatial resolution used in the simulation. This figure also illustrates 

the improvement in reproducing the analytical solution, when the lateral discretization is decreased to 

∆x = 1 m (increasing the spatial resolution to nx = 400) .  
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Figure 4. Comparison between the numerical (symbols) and analytical solution (solid line) for two 

different ∆x values.  

 

Because the accuracy (and to some extent the convergence) of the numerical solution does not directly 

depend on the time step size ∆t, the Newton-Krylov method is very useful for solving overland flow 

problems, which are often fraught with numerical instabilities due to inadequate time step criteria. This 

is demonstrated in Figure 5, which plots the numerical solutions for a wide range of constant time step 

sizes. Note, that the differences in the simulated onset of the recession period are due to the coarse 

temporal resolution for large time steps. 
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Figure 5. The effect of time step size on simulated outflow for the 1-D overland flow problem. 

 

3.2 Integrated modeling examples 

In this section we present simulations that focus on the interaction of flow between the surface and 

subsurface. The runoff generating processes of excess saturation and infiltration are examined and 

compared to the 1D base case. The influence of vertical spatial discretization and subsurface 

heterogeneity in the hydraulic conductivity on the resulting hydrograph are also investigated. In all 

cases the gradient outlet condition is employed and a constant rainfall rate of qr = 0.33 (mm/min) is 

applied for 200 minutes followed by 100 minutes of recession. Table 1 provides a summary of the 

different simulations.  

 



Table 1. Summary of the integrated modeling examples. 

Type WT depth (m) ∆z (m) Ksat (m/day) 
0.2 1.0 
0.05 
0.2 

Excess saturation 
Ksat > qr 

0.5 
0.05 

1.0 

0.05 
0.01 

0.1 

0.05 

Excess infiltration 
Ksat < qr 

1.0 

0.01 
0.01 

1.0, slab: 0.01 Mixed 1.0 0.05 
Kg = 0.4752  
σ[ln(Ksat)] = 3.0 

 

Runoff Production by Excess Saturation, Ksat > qr 

The process of excess saturation simply involves the complete saturation of the subsurface and the 

intersection of the land surface by the water table, where the outcroping water table produces the 

runoff. To accomplish this, the hydraulic conductivity must be larger than the rainfall rate. We 

simulated two cases with a shallow water table located at a depth of 0.5 m and 1.0 m below the ground 

surface. The vanGenuchten parameters and saturated hydraulic conductivity are as follows: Ksat = 1.0 

m/day, N = 2.0, α = 1.0, θres = 0.08, θsat = 0.4. The results of these two cases are shown in Figure 6. 

Additionally, for each case, the sensitivity of runoff to the vertical discretization was explored. This 

was achieved by varying the constant vertical discretization from ∆z = 0.05 m to ∆z = 0.2 m. Figure 6 

also shows the results from the base case for comparison. For excess saturation, Figure 6 reveals, that 

the vertical discretization does not have a significant impact on the predicted outflow hydrograph. This 

can be seen by comparing the curves using different ∆z values for a given water table depth. For the 

water table depth of 0.5 m and 1 m, the times of ponding are some 19 minutes and 117 minutes, 

respectively. For the 1 m initial water table depth, no steady state is reached and the outflow rate is 

always smaller than rainfall rate multiplied by the length of the channel. 
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Figure 6. Comparison of the base case with simulations using qr < Ksat and different vertical 

discretizations for water table depths of 0.5 and 1.0 m. 

 

Runoff Production by Excess Infiltration, Ksat < qr 

The more complex process of excess infiltration involves the saturation of the surface and ensuing 

ponding of water, before the subsurface saturates completely. For excess infiltration to occur the 

saturated hydraulic conductivity of the surface must be smaller than the rainfall rate. 

 

The results of these coupled simulations are shown in Figure 7. The water table is located 1 m below 

the ground surface. The vanGenuchten parameters are the same as the previous set used in the excess 

saturation simulations. The saturated hydraulic conductivity was varied from Ksat = 0.1 to 0.01 m/day 

and two different vertical dicretizations were used (∆z = 0.05 m and 0.01 m)  

 



For cases where runoff is produced by excess infiltration, the vertical discretization has a significant 

impact on the ponding time (Figure 7). This is because the top model layer holds a finite storage 

volume that must be saturated for ponding to occur (e.g. Downer and Odgen, 2004). Thus, the solution 

becomes less accurate for large ∆z values near the ground surface. This problem can be remedied by 

e.g., making ∆z at the land surface very small.  
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Figure 7. Comparison of the base case with simulations using qr > Ksat and different vertical 

discretizations.  

 

Subsurface Heterogeneity in Ksat 

A nonuniform spatial distribution of the hydraulic properties of the subsurface may have a significant 

impact on the observed hydrograph (Woolhiser et al., 1996). Therefore, it is important that an 

integrated flow model be able to account for subsurface heterogeneity. The ability of ParFlow to handle 

strongly heterogeneous parameter distributions has been demonstrated previously by Jones and 



Woodward (2001), Tompson et al. (1999) and Maxwell et al. (2003) for subsurface flow only. The 

following two examples will demonstrate the usefulness of this modeling approach in simulating 

interactions between surface water and groundwater under heterogeneous subsurface conditions. 

 

The first example is a variation of the excess saturation case described above. The difference is the 

inclusion of a 100 m long, low conductivity slab, Ksat = 0.01 m/day, located in the center of the domain 

extending from the land surface to a depth of 0.05m. The initial water table was set to a depth of 1.0 m 

below the land surface and the vertical discretization was ∆z = 0.05 m. Figure 8 shows the resulting 

hydrograph and a comparison with the base and the homogeneous excess saturation case. 

 

The simulated hydrograph is characterized by four distinct segments: two steep segments separated by 

a flat segment and a recession period after cessation of the rain (at t=200 minutes), which makes up the 

fourth segment. Figure 9 shows the temporal evolution of the flow depth distribution at the land 

surface. Figure 10 contains a time series of plots of the vertical relative saturation profiles of the 

domain starting from the initial conditions at t = 0. The step-like representation of the topography in 

ParFlow (e.g., Figure 10) is a result of the lateral discretization, the topographic slope and the finite 

difference grid. Figures 8 to 10 demonstrate the interactions and interdependence of excess infiltration 

and saturation processes in the presence of subsurface heterogeneity and are discussed in detail below. 

 

The time series in Figure 10 (t = 39 min) shows that ponding first occurs in the region of the low-Ksat 

slab, because of excess infiltration. This is also illustrated by the flow depth distribution in Figure 9 at 

early times. The ponded water is routed over the slab and infiltrates downhill of the slab causing 



saturation of the subsurface, which subsequently reaches the surface. This process causes a saturation 

front to form and move from the slab toward the outlet (see plots for t = 60 to 102 min in Figure 10). 

 

Complete saturation of the subsurface results in the formation of a surface wave that reaches the outlet 

at about 110 minutes, which is reflected in the curves for t < 110 minutes in Figure 9. The outflow rate 

increases sharply as the wave arrives at the outlet (first segment of the hydrograph shown in Figure 8). 

At this time, the subsurface uphill from the slab is only unsaturated just below the ground surface (t = 

111 minutes). Shortly after the entire domain becomes saturated, the hydrograph flattens, and a quasi 

steady state is reached for the period 135 min < t < 150 minutes (second segment). This is due to the 

stabilization of the flow depth profile along the slope downhill from the slab.  

 

As soon as the subsurface is saturated completely uphill of the slab and, thus over the entire domain, a 

second wave is generated uphill of the slab that starts traveling toward the outlet (from t = 117 to 150 

minutes). At 150 minutes, the outflow rate again increases sharply (third segment), when the second 

wave reaches the outlet (t = 150 to 200 minutes in Figure 8). A second steady state is not obtained in 

this case, because there is not enough time for the flow depth profile to stabilize over the entire domain. 

 

After cessation of the rain at t = 200 minutes, the outflow rate decreases monotonically during the 

recession period. The subsurface beneath the slab remains partially unsaturated over the entire 

simulation period, though lateral redistribution of soil moisture is clearly detectable from the plots in 

Figure 10. 
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Figure 8: Plot of the outflow hydrograph as a function of time with and without a low-conductivity slab 

located in the center of the domain along with the base case. 
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Figure 9. Plot of simulated flow depth as a function of x (lateral profiles at the land surface) for 

different simulation times. 



2

3

z 
(m

)
0 100 200 300 400

x (m)

2

3

z 
(m

)

0 100 200 300 400
x (m)

2

3

z 
(m

)

0 100 200 300 400
x (m)

2

3

z 
(m

)

0 100 200 300 400
x (m)

2

3

z 
(m

)

0 100 200 300 400
x (m)

2

3

z 
(m

)

0 100 200 300 400
x (m)

2

3

z 
(m

)

0 100 200 300 400
x (m)

2

3

z 
(m

)

0 100 200 300 400
x (m)

0.2 0.4 0.6 0.8 1.0
Saturation  

Figure 10. Snapshots of vertical profiles of relative saturation at different simulation times (note the 

strong vertical exaggeration).  

 



The second heterogeneous example consists of a set of simulations, where each simulation is based on 

a realization of random subsurface heterogeneity in Ksat. We used a hypothetical, correlated Gaussian 

random field to describe the distribution of the saturated hydraulic conductivity (Tompson et al., 1989) 

with the following properties: geometric mean: Kg = 0.4752 m/day; standard deviation: σ[ln(k)] = 3.0; 

correlation lengths in horizontal and vertical direction, respectively: ηh = 50.0 m, ηz = 1.0 m. Different 

random seeds were used to generate four equally likely realizations of the Ksat distribution. Note that 

the geometric mean of the distribution is equal the rainfall rate. This allows both runoff-generating 

processes (excess saturation and infiltration) to occur simultaneously in the simulations. The spatial 

distribution of these processes depends on the lateral Ksat distribution in the top layer of an individual 

realization. The initial water table depth was set at 1.0 m. The horizontal and vertical discretizations 

were 10 m and 0.05 m, respectively to capture the scale of the heterogeneity and the infiltration excess 

timing. For comparison, the model was also run for a homogeneous saturated hydraulic conductivity, 

Ksat = Kg = 0.4752 m/d, referred to below as the geometric mean simulation. 

 

Figure 11 shows the hydrographs for four realizations of subsurface heterogeneity, the geometric mean 

simulation, and the base case. The spread in the curves for the different realizations is a measure of the 

uncertainty associated with the hydrograph due to uncertainty in the subsurface heterogeneity. Because 

all other parameters were kept constant and the rainfall rate was applied uniformly in space, this figure 

illustrates the direct impact of subsurface heterogeneity on the outflow rate. Comparing the geometric 

mean simulation with the different realizations, it can be seen that the geometric mean simulation 

underestimates the runoff rate at earlier times (t < 150 minutes), when the process of excess infiltration 

plays a dominant role in the production of runoff. For the duration 150 < t > 200 minutes, the geometric 

mean simulation is bounded by the set of curves from the different realizations. During this time period 



excess saturation is the main runoff-generating process. The peak outflow rate, which occurs at t = 200 

minutes, is overestimated by the geometric mean simulation. 

 

Another process of runoff production, which can also occur due to aquifer heterogeneity, but can be 

seen as being different from the processes of excess infiltration and saturation, is the formation of a 

perched water table that intersects the ground surface. This process of runoff production is different 

from excess infiltration in that it forms saturated regions in the shallow subsurface not merely the 

ground surface itself. A perched water table and associated runoff can only be accounted for by 

explicitly incorporating aquifer heterogeneity into the flow model. This runoff-generating process 

contributed some of the early-time runoff in the different realizations. This resulted in larger runoff 

rates when compared to the geometric mean simulation, which cannot account for a perched water 

table.  

 

Figure 12 shows the interdependence of the different runoff generating processes due to the presence of 

aquifer heterogeneity for a single realization. The aquifer heterogeneity is indicated at the top, with Ksat 

varying over orders of magnitude. Inspection of the saturation profile at the bottom of Figure 12 reveals 

that there are regions of ponded water due to a region of low conductivity heterogeneity right at the 

surface and in the shallow subsurface (e.g. perched water table at around x ≅ 180 m). The profile also 

exhibits an interesting feature at x ≅ 280, where a high conductivity path conveys the ponded water 

from the surface directly into the deeper aquifer, highlighting the importance of aquifer heterogeneity 

characterization and representation in coupled surface water groundwater systems. These features also 

indicate the importance of subsurface heterogeneity in coupled surface-subsurface problems concerned 

with mass transport. 



Time (minutes)

0 50 100 150 200 250 300

O
ut

flo
w

ra
te

 (m
2 /s

ec
)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

geometric mean

base case

 

Figure 10. Results from the four Gaussian random field and geometric mean simulations. The base case 

is shown for comparison. 
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Figure 12. Example of a Ksat distribution of a single realization (top) and the associated relative 

saturation profile after 45 minutes simulation time (bottom). 

 

 

Parallel Scalability 

A major advantage of ParFlow over other existing integrated hydrologic modeling tools is the 

infrastructure devised for massively parallel computer systems (Ashby and Falgout, 1996; Jones and 

Woodward, 2001). The overland flow simulator discussed here is designed to exploit this infrastructure 

and is, thus, massively parallel as well. A determining factor of parallel efficiency is the time the code 

spends on inter-processor communications (communication overhead) relative to the computation time. 



When the ratio between communication overhead and computation time is small, the parallel efficiency 

is large. Parallel efficiency of the overland flow simulator in ParFlow was studied by performing 

simulations of varying problem sizes and analyzing the respective run times. Following Jones and 

Woodard (2001) the scaled efficiency, E, is defined as E(np,p) = T(n,1) / T(np,p), where T is the run 

time as a function of the problem size, n; and the number of processors, p. For the case of a perfectly 

efficient parallel simulator, E(np,p) = 1, doubling the problem size and the number of processors will 

result in the same run time. 

 

Figure 13 shows E for two different modeling problems: overland flow only (surface) and for the case 

of excess infiltration produced runoff (surface/subsurface). The two different problems were run for a 

smaller number of model cells (nx,ny,nz) per processor (20,20,1 and 20,20,5) and for are larger number 

(100,100,1 and 100,100,5) to test the performance of the code for different communication overhead 

and computation time ratios. 

 

For the smaller problem size, the parallel efficiency of the excess infiltration case is significantly higher 

than for the overland flow only case. The scaled efficiency for the excess infiltration case levels off at 

about 0.60, whereas the scaled efficiency for the overland flow only case levels off at about 0.45. This 

is due to relatively small computational times at individual processors for the overland flow only case 

and, thus, large communication overhead versus computation time ratios. 

 

This trend, however, is reversed when the problem size at each processor is increased to 100,100,1 and 

100,100,5. Figure 13 shows a significant increase in the scaled efficiency for the overland flow only 

case, which now levels of at about 0.82. An increase, though smaller, is also observed in the saturation 



excess case, which now levels off at 0.72. This is due to larger increases in the computation time 

compared to the communication overhead and results in a smaller communication overhead versus 

computation time ratio demonstrating the parallel efficiency of ParFlow. 
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Figure 13. Scaled parallel efficiency for simulations of surface flow only and surface/subsurface flow 

using small and large problem sizes per processor. 



4 Conclusions 

A new formulation of coupled surface water groundwater flow, which does not depend on a 

conductance-like relationship, has been described. This formulation forms the basis of an overland flow 

simulator based on the kinematic wave approximation, that has been implemented in the parallel, three-

dimensional, variable saturated flow code ParFlow. The overland flow simulator takes the form of a 

free-surface upper boundary condition for the problem of variable saturated groundwater flow and is 

therefore fully integrated. 

 

The overland flow simulator was verified using previously published data and an analytical solution. 

The globalized Newton solution methods allow for the application of very large time steps without 

compromising numerical stability, which is an advantage over other approaches that are based on 

restricting stability criteria. Simulation examples were presented that focused on the two main 

processes of runoff production, excess saturation and infiltration. The effect of varying vertical 

discretization was also studied. Changes in the vertical discretization had a significant impact on the 

solution only in the case of excess infiltration, due to dependence of the time of ponding on the finite 

storage of the top layer. 

 

We have shown that shallow subsurface heterogeneity may have a strong influence on the outflow rate 

and may cause a segmented hydrograph. A set of simulations where a heterogeneous subsurface was 

simulated as a correlated random field was used to demonstrate how uncertainty due to subsurface 

heterogeneity influences uncertainty in runoff predictions. A comparison with a homogeneous 

geometric mean simulation of the hydraulic conductivity showed that the geometric mean simulation 

may not account for excess infiltration and thus underestimates early parts of the hydrograph. Because 



the new coupled formulation can explicitly account for subsurface heterogeneity, the production of 

runoff due to the formation of a perched water table can be simulated. This process of runoff 

production is generally neglected by other hydrologic modeling tools and acts on a time scale between 

excess infiltration (short time scale) and excess saturation (long to very long time scale) depending on 

the depth of the water table from the ground surface. 

 

A parallel efficiency study showed the excellent scalability of the overland flow simulator and the 

fully-coupled surface-subsurface simulator for large problems. This makes this new coupled model 

especially suitable for small and large watershed modeling, where the efficient use of large 

computational resources is vital. 
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